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SYSTEMS AND METHODS FOR DETECTING
AND COORDINATING CHANGES IN
LEXICAL ITEMS

CROSS REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. application Ser.
No. 12/325,157, filed Nov. 29, 2008 now U.S. Pat. No. 8,271,
422, the entirety of which is incorporated herein by reference.

TECHNICAL FIELD

The present disclosure relates generally to identifying
trends in a data set and, more particularly, to systems and
methods for detecting and coordinating changes in lexical
items.

BACKGROUND

Text streams are ubiquitous and contain a wealth of infor-
mation, but are typically orders of magnitude too large in
scale for comprehensive human inspection. Organizations
often collect voluminous corpora of data continuously over
time. The data may be, for example, email messages, tran-
scriptions of customer comments or of phone conversations,
recordings of phone conversations, medical records, news-
feeds, or the like. Analysts in an organization may wish to
learn about the contents of the data and the changes that occur
over time, including when and why, such that they may under-
stand and/or act upon the information contained within the
data. Because of the large volume of data, reading each docu-
ment in the corpora of data individually to determine the
changes and summarize the contents can be expensive as well
as difficult or impossible.

SUMMARY

The present disclosure describes systems and methods for
efficiently detecting step changes, trends, cycles, and bursts
affecting lexical items within one or more data streams. The
data stream can be a text stream that includes, for example,
documents and can optionally be labeled with metadata.
These changes can be grouped across lexical and/or
metavalue vocabularies to summarize the changes that are
synchronous intime. A lexical item can include a single word,
a set of words, symbols, numbers, dates, places, named-enti-
ties, URLs, textual data, multimedia data, other tokens, and
the like. A metavalue can include information about incoming
text or other incoming data. Metadata can be external meta-
data or internal metadata. External metadata can include facts
about the source of the document. Internal metadata can
include labels inferred from the content. Examples of
metavalues include, but are not limited to, information about
the source, geographic location, current event data, data type,
telecommunications subscriber account data, and the like.

In one embodiment of the present disclosure, a method for
efficiently detecting and coordinating change events in data
streams can include receiving a data stream. The data stream
can include various lexical items and one or more metavalues
associated therewith. The method can further include moni-
toring a probability of occurrence of the lexical items in the
data stream over time according to a lexical occurrence model
to detect a plurality of change events in the data stream. The
method can further include applying a significance test and an
interestingness test. The significance test can be used to deter-
mine if the change events are statistically significant. The
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2

interestingness test can be used to determine if the change
events are likely to be of interest to a user. The interestingness
test can be defined using conditional mutual information
between the lexical items and the lexical occurrence model
given a time span to determine the amount of information that
is derived from the change event. The method can further
include grouping the change events across the lexical items
and the metavalue to summarize the change events that are
synchronous in time. The method can further include present-
ing, via an output device, a summarization of the grouped
change events to the user.

In some embodiments, the change events are step changes,
trends, cycles, or bursts in the data stream.

In some embodiments, the lexical occurrence model is a
piecewise-constant lexical model, for example, based upon a
Poisson or other distribution. In other embodiments, the lexi-
cal occurrence model is a piecewise-linear lexical model, for
example, based upon a Poisson or other distribution. In still
other embodiments, the lexical occurrence model includes a
piecewise-linear component and periodic component to
detect the change events in the data stream for recent data and
long-span data, respectively.

In some embodiments, the interestingness test can be
defined by the relationship:

IW-MTy=H(NT)-HVM,T)

to determine the amount of information that is derived from
the change event.

In some embodiments, the method can further include
applying the monitoring step in a stream analysis mode. In a
stream analysis mode, the lexical occurrence model includes
a slowly-evolving periodic component for modeling regular
cyclic changes, together with a piecewise-linear component
for modeling irregular acyclic changes that may occur over
either long or short timescales.

According to another embodiment of the present disclo-
sure, a computer readable medium can include computer
readable instructions that, when executed, perform the steps
of the aforementioned method.

According to another embodiment of the present disclo-
sure, a computing system for detecting and coordinating
change events in data streams can include a processor, an
output device, and a memory in communication with the
processor. The memory can be configured to store instruc-
tions, executable by the processor to perform the steps of the
aforementioned method.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 schematically illustrates a computing system for use
in accordance with various exemplary embodiments of the
present disclosure.

FIG. 2 schematically illustrates a system architecture for
implementing a CoCITe (Coordinating Changes In Text) tool
in a retrospective analysis mode of operation in accordance
with an exemplary embodiment of the present disclosure.

FIG. 3 schematically illustrates a system architecture for
implementing a CoCITe tool in a stream analysis mode of
operation in accordance with an exemplary embodiment of
the present disclosure.

FIG. 4 schematically illustrates a method for operating a
CoClTetool in accordance with an exemplary embodiment of
the present disclosure.

FIG. 5 schematically illustrates a method for operating a
CoClTe tool in accordance with another exemplary embodi-
ment of the present disclosure.



US 9,324,007 B2

3

FIG. 6 is an exemplary graph of a two-segment lexical
occurrence model with periodic modulation, according to the
present disclosure.

FIG. 7 illustrates an exemplary optimization of lexical
occurrence model components, according to the present dis-
closure.

FIG. 8 is an exemplary graph of a significance test for
change-points, according to the present disclosure.

FIG. 9 is an exemplary graph of the likelihood computation
time for two exemplary likelihood computation methods,
according to the present disclosure.

FIG. 10 is an exemplary log-scale plot of the average
per-word CPU time to optimize a piecewise-linear model as a
function of length of data for two exemplary likelihood com-
putation methods, according to the present disclosure.

FIG. 11 is an exemplary graph of several profiles that show
various exemplary types of step events, each with an onset
phase shown in bold including one or more change-points,
according to the present disclosure.

FIG. 12 is an exemplary graph of several profiles that show
various exemplary types of burst events, each with an offset
phase shown in bold including the onset phase, according to
the present disclosure.

FIG. 13 is an exemplary plot of events on the m-w plane,
according to the present disclosure.

FIG. 14 is an exemplary table summarizing results
obtained by applying a CoCITe method to various corpora,
according to the present disclosure.

FIG. 15 is an exemplary plot of two of the responses to the
initial greeting prompt for an Interactive Voice Response
(IVR) application for an electronics company over a 90-day
period, according to the present disclosure.

FIG. 16 is an exemplary plot for flight status requests at the
initial greeting for an airline application, according to the
present disclosure.

FIG. 17 is an exemplary table illustrating the top ten clus-
ters including a start date, the number of words, and the
metavalues (states) in each cluster for a plurality of events,
according to the present disclosure.

FIG. 18 is an exemplary table illustrating search query data
burst events, according to the present disclosure.

FIG. 19 is an exemplary plot of the profile of the burst event
using daily data for the death of Princess Diana, according to
the present disclosure.

FIG. 20 is an exemplary table illustrating event clusters for
Enron in the year 2000, according to the present disclosure.

FIG. 21 is an exemplary plot for daily and weekly periodic
variation for hourly data acquired from an IVR application,
according to the present disclosure.

FIG. 22 is an exemplary plot of data acquired from an IVR
application, according to the present disclosure.

FIG. 23 is an exemplary plot of Botnet activity as detected
by an exemplary CoClITe tool, according to the present dis-
closure.

DETAILED DESCRIPTION

As required, detailed embodiments of the present disclo-
sure are disclosed herein. It must be understood that the
disclosed embodiments are merely exemplary examples of
the disclosure that may be embodied in various and alterna-
tive forms, and combinations thereof. As used herein, the
word “exemplary” is used expansively to refer to embodi-
ments that serve as an illustration, specimen, model or pat-
tern. The figures are not necessarily to scale and some features
may be exaggerated or minimized to show details of particu-
lar components. In other instances, well-known components,
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systems, materials or methods have not been described in
detail in order to avoid obscuring the present disclosure.
Therefore, specific structural and functional details disclosed
herein are not to be interpreted as limiting, but merely as a
basis for the claims and as a representative basis for teaching
one skilled in the art to variously employ the present disclo-
sure.

By way of example and not limitation, consider a flow of
text in the form of a stream of documents, each labeled with
a time stamp and optionally with metadata, for example, the
values of zero or more metavariables of the source. Each
document can contain a set of words. The analysis described
herein is also applicable to more general lexical items, such
as, for example, phrases and non-local conjunctions. Given
the enormous volumes of text currently being acquired and
stored in many domains, it is impractical for human analysts
to scan these volumes in order to find and summarize the
important changes that are occurring, especially in a timely
manner. Accordingly, the present disclosure provides systems
and methods for detecting changes in frequency of occur-
rence of lexical items, either overall or for particular metaval-
ues, localizing these changes in time, and coordinating
changes that are synchronous in time across both lexical and
metavalue vocabularies into higher-order events.

The present disclosure approaches the term “event” from a
statistical view as would be understood by one skilled in the
art. The output of a system according to the present disclosure
can be a set of ranked groups, each of which can include one
or more sets of lexical items and metavalues together with a
description of the timing of the event, which can be a step,
trend, cycle, burst, or the like. It is contemplated that the
system output can be accompanied by original versions of
documents that can be presented to an analyst for inspection.

Aspects of the present disclosure can be applied to docu-
ments of any length, although accuracy has been found to
increase for documents that are relatively short. Documents
can be divided into smaller documents, paragraph by para-
graph, sentence by sentence, word by word, or character by
character, for example. Some exemplary documents include:

search queries;

instant messages;

text messages;

customer care data, such as, but not limited to human-

machine dialogues (e.g., Interactive Voice Response
(IVR) system call logs), notes made by customer care
agents, customer emails;
billing data;
medical records;
emergency room admissions data;
network traffic data, such as, but not limited to, normal
traffic data, peak traffic data, and sub-normal traffic data;

malicious network activity, such as, but not limited to,
botnet activity, malicious software activity, and the like;
and

network attack activity, such as, but not limited to, eaves-

dropping activity, data modification activity, identity
spoofing activity, IP address spoofing activity, pass-
word-based attacks, denial-of-service attacks, man-in-
the-middle attacks, compromised-key attacks, sniffer
attacks, and application-layer attacks.

Metadata, if available, is valuable in several respects.
Changes are often concentrated in sub-streams of the text
flow characterized by particular metavalues. Hence, perform-
ing change-detection for individual metavalues or groups
thereof focuses the search where necessary and avoids dilu-
tion. In addition, distinct groups of changes often overlap in
time and share words or metavalues. Also, availability of
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metadata helps the coordination of changes into distinct
events and avoids confusion. From an analyst’s perspective,
having a change-event labeled with a metavalue or group of
metavalues helps to contextualize the change-event and aids
in understanding the change-event.

The potential disadvantages of using sub-streams are a loss
of power after separating the data into sub-streams for analy-
sis, and additional computational burden. To alleviate these
disadvantages, the present disclosure can impose a size limit
on the metavalue vocabulary, for example, by grouping
metavalues to reduce computational burden. Size limitations,
if needed, can depend on the data set and the computational
resources available. A metavalue vocabulary size on the order
of tens can be preferable to one on the order of hundreds.

Conventional statistical tools can test two predetermined
time intervals for whether the frequency of a given lexical
item changed. In one embodiment of the present disclosure,
neither the time intervals nor the number of changes are
predetermined. In one embodiment of the present disclosure,
the occurrences of the lexical item in a given text stream are
modeled by a Poisson process, and changes are expressed in
terms of the intensity of this process. The present disclosure
can be fit to other models, such as, but not limited to, pro-
cesses described by generalized Poisson distributions, bino-
mial distributions, or negative binomial distributions.

The present disclosure provides systems and methods for
detecting and coordinating changes of lexical items in the
following exemplary respects:

The lexical vocabulary is not prescribed, although it can be

seeded with items of particular interest.

Multiple change-points for each lexical item can be
detected using a dynamic programming algorithm that
ensures optimality.

The Poisson intensity parameter is assumed to be piece-
wise-linear. In addition to step changes, this allows the
event occurrence rate to trend upwards or downwards in
between the change-points.

A multi-phase periodic modulation can be superimposed
on the intensity.

This allows forregular (e.g., weekly) cycles, and avoids the

redundant discovery of these as change-points.

A measure of interestingness is introduced. This weights
each change-point by how much information it provides,
and complements the more conventional measure of
statistical significance.

Metadata are expressly incorporated into the analyst.

Individual atomic changes affecting word/metavalue com-
binations are grouped together where these are likely to
arise from a common cause. This provides a structured
output that is easier for a human analyst to assess.

Referring now to the drawings wherein like numerals rep-
resent like elements throughout the drawings, FIG. 1 illus-
trates an exemplary computing system 100 with which the
present disclosure can be implemented. The illustrated sys-
tem 100 includes a system bus 102 that couples various sys-
tem components including a processor 104, a system memory
106, a read only memory (ROM) 108, and a random access
memory (RAM) 110 to the processor 104. Other system
memory can be available for use as well. It can be appreciated
that the present disclosure can operate on a computing system
with more than one processor 104 or on a group or cluster of
computing systems networked together to provide greater
processing capability. The system bus 102 can be any of
several types of bus structures including a memory bus or
memory controller, a peripheral bus, and a local bus using any
of'a variety of bus architectures. A basic input/output (BIOS),
containing the basic routine that helps to transfer information
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between elements within the computing system 100, such as
during start-up, is typically stored in ROM 108. The illus-
trated computing system 100 further includes a storage device
112, such as a hard disk drive, a magnetic disk drive, an
optical disk drive, tape drive, or the like. The storage device
112 is connected to the system bus 102 by a drive interface.
The drives and the associated computer readable media pro-
vide nonvolatile storage of computer readable instructions,
data structures, program modules, and other data for the com-
puting system 100. The basic components are known to those
of'skill in the art and appropriate variations are contemplated
depending on the type of system, such as whether the system
is a small, handheld computing device, a desktop computer, a
computer server, a network cluster, and the like.

Although the exemplary environment described herein
employs the hard disk, it should be appreciated by those
skilled in the art that other types of computer readable media
which can store data that are accessible by a computer, such as
magnetic cassettes, flash memory cards, digital versatile
disks, cartridges, RAMs, ROMs, a cable or wireless signal
containing a bit stream and the like, can also be used in the
exemplary operating environment.

To enable user interaction with the computing system 100,
an input device 114 represents any number of input mecha-
nisms, such as a microphone for speech, a touch-sensitive
screen for gesture or graphical input, keyboard, mouse,
motion input, and the like. An output device 116 can also be
one or more of a number of output means, such as a display,
monitor, projector, touch screen, multi-touch screen, or other
output device capable of presenting results data to an analyst
in a visual manner.

In some instances, multimodal systems enable a user to
provide multiple types of input to communicate with the
computing system 100. A communications interface 118 gen-
erally governs and manages the user input and system output.
There is no restriction on the present disclosure operating on
any particular hardware arrangement and therefore the basic
features here may be substituted, removed, added to, or oth-
erwise modified for improved hardware or firmware arrange-
ments as they are developed.

Referring now to FIG. 2, a system architecture 200 for
implementing a CoCITe (Coordinating Changes In Text) tool
in a retrospective analysis mode of operation is illustrated in
accordance with an exemplary embodiment of the present
disclosure. The illustrated system architecture 200 includes a
CoClTe tool 202 that can be configured to operate in a retro-
spective analysis mode. In an exemplary embodiment, a cor-
pus of data 204 is received at the CoClTe tool 202, analyzed
over a specified period of time according to a lexical occur-
rence model 206, outputto a visualization interface 208 (real-
ized via one or more output devices 116), and presented to an
end user, such as an analyst, in a graph, plot, table, or other
visualization. In the retrospective analysis mode, all model-
ing and visualization covers the specified period of time.

Referring now to FIG. 3, a system architecture 300 for
implementing a CoCITe tool 302 in a stream analysis mode of
operation is illustrated in accordance with an exemplary
embodiment of the present disclosure. The illustrated system
architecture 300 includes a CoCITe tool 302 that can be
configured to operate in a stream analysis mode. In an exem-
plary embodiment, a corpus of data 304 is received at the
CoClTe tool 302 and analyzed together with a history file
306. A new history file 306 can be generated together with the
output of the change-detection algorithms described herein.
The history file 306 can include past data that is useful for
future analyses to create future training models in conjunc-
tion with new data. The history file 306 does not grow without
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bound because model segments are regularly transitioned to
permanent status and the history file 306 is updated accord-
ingly. As the time span lengthens, the first segment of the
fitted model eventually becomes permanent and the start
point moves forward to the end of that segment. Both tempo-
rary and permanent models go into the visualization covering
any time-span.

In the stream analysis mode, the CoClTe tool 302 can
create permanent segments (permanent models 308) of the
lexical occurrence model from temporary models 310 as the
span of incoming data moves forward in time. Accordingly,
the CoCITe tool 302 can receive data on an on-going basis,
analyze the data, output results to a visualization interface
312 (realized via one or more output devices 116), and pre-
sented to an end user, such as an analyst, in a graph, plot, table,
or other visualization. In the stream analysis mode, new data
arrives on an on-going basis, existing models are extended
and updated, and an arbitrary time-span can be used for
visualization.

The stream analysis mode improves efficiency over the
retrospective analysis mode because earlier data is already
pre-processed for model training and new data can be added
expeditiously. The stream analysis mode also decouples opti-
mization of model components. The periodic component
changes slowly and the model is thereby trained using
smoothed data from a long time-span. The piecewise-linear
component may change quickly and the model is thereby
trained using fully-detailed recent data.

Referring now to FIG. 4, a method 400 for operating a
CoClTe tool 202, 302 is illustrated, according to an exem-
plary embodiment of the present disclosure. It should be
understood that the illustrated method 400 can be performed
by a CoClITe tool 202, 302 operating in a retrospective analy-
sis mode or a stream analysis mode as described above. It
should be understood that the steps of the method 400 are not
necessarily presented in any particular order and that perfor-
mance of some or all the steps in an alternative order(s) is
possible and is contemplated. The steps have been presented
in the demonstrated order for ease of description and illustra-
tion. Steps can be added, omitted and/or performed simulta-
neously without departing from the scope of the appended
claims. It should also be understood that the illustrated
method 400 can be ended at any time. Some or all steps of this
process, and/or substantially equivalent steps, can be per-
formed by execution of computer-readable instructions
included on a computer readable medium.

The method 400 begins and flow proceeds to block 402
wherein one or more data streams including one or more
documents each optionally labeled with metadata are
received at the CoClITe tool 202, 302. It should be understood
that the use of the term “documents™ here is merely exem-
plary and the data stream can alternatively include raw or
unformatted text, or other lexical items. Flow can proceed to
block 404 wherein a determination is made as to whether a
lexical vocabulary is prescribed. If a lexical vocabulary is not
prescribed, flow can proceed to block 406 wherein a lexical
vocabulary can be discovered. Flow can then proceed to block
408 wherein the probability of occurrence of lexical items in
the incoming data streams over time is monitored. If a lexical
vocabulary is prescribed, flow can proceed directly to block
408. At block 410, changes can be coordinated across lexical
items and metadata. Flow can then proceed to block 412
wherein results can be output for visualization in the form of
a graph, plot, table, or other visualization. The method can
end.

Referring now to FIG. 5, a method 500 for operating a
CoClTe tool 202, 302 is illustrated, according to another

25

30

35

40

45

65

8

exemplary embodiment of the present disclosure. It should be
understood that the illustrated method 500 can be performed
by a CoClITe tool 202, 302 operating in a retrospective analy-
sis mode or a stream analysis mode as described above. It
should be understood that the steps of the method 500 are not
necessarily presented in any particular order and that perfor-
mance of some or all the steps in an alternative order(s) is
possible and is contemplated. The steps have been presented
in the demonstrated order for ease of description and illustra-
tion. Steps can be added, omitted and/or performed simulta-
neously without departing from the scope of the appended
claims. It should also be understood that the illustrated
method 500 can be ended at any time. Some or all steps of this
process, and/or substantially equivalent steps, can be per-
formed by execution of computer-readable instructions
included on a computer readable medium.

The method 500 begins and flow proceeds to block 502
wherein one or more data streams including one or more
documents each optionally labeled with metadata can be
received at the CoClITe t001202, 302. Atblock 504, an acyclic
component of the lexical occurrence model can be defined
such that documents containing a particular lexical item are
assumed to occur at a rate described by an intensity function
that is piecewise-linear over time. For example, a Poisson
distribution model or other distribution models can be used.
Each linear piece of the model is referred to herein as a
segment. There is no prescribed number of segments. The
acyclic component can be used to model step changes, trends,
and bursts in the incoming lexical items.

At block 506, an optional cyclic component of the lexical
occurrence model can be defined such that a multi-phase
periodic modulation can be superimposed on the intensity
function. The cyclic component can be used to model regular
cyclic changes in rate and can have multiple periods and
phases. FIG. 6 illustrates a two-segment model with periodic
modulation that is modeled after a cyclic component of an
exemplary lexical occurrence model.

At block 508, the acyclic and cyclic model components are
optimized using a dynamic programming algorithm. The
optimization results in a likelihood of the data to maximize.
The likelihood can be computed as the product of the prob-
ability of the actual data values.

Referring briefly to FIG. 7, an exemplary optimization of
the lexical model components using a dynamic programming
algorithm is illustrated. The dynamic programming algo-
rithm can optimize likelihood for the piecewise-linear com-
ponent given the most recent data. There is no prescribed limit
to the number of model segments in the optimization. An
overall quadratic-time implementation is contemplated.
Measures of significance and interest at change-points are
used in the optimization. The dynamic programming algo-
rithm can use a maximum-likelihood procedure, such as the
exemplary procedure described herein below, to optimize the
periodic component.

At block 510, a significance test for change-points is
applied. Various exemplary significance tests are described
herein below for a piecewise-constant model and a piecewise-
linear model. FIG. 8 is an exemplary graph of a significance
test for change-points, according to the present disclosure.
The difference in piecewise-linear segments is shown. If both
piecewise-linear segments are constant, a 2x2 contingency
table can be used. Otherwise, a standard F-test can be used to
compare separate models (solid line) with a single model
spanning both segments (dashed line). A continuity test can
reveal if the slope changes but the intercept does not, then one
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less parameter is needed in the overall model. The F-test
comparing separate models with a weighted two-phase
regression model (green line).

At block 512, an interestingness test for change-points is
applied. The most significant changes are often not the most
interesting. When large amounts of data are received, a rank-
ing based on significance can obscure interesting changes
affecting rare events. Accordingly, a measure of interest or
otherwise termed “interestingness” can be defined using con-
ditional mutual information between lexical item (W and
model (M) given time (T):

IW-MTDy=H(NT)-HWM,T)

where H( ) is conditional entropy. The measure of interest
measures the amount of information that can be learned from
the change in the model, allowing for the fact that the models
may each depend on time (a trend segment). The definition of
the measure of interest is defined to cover all situations and
can therefore be used to rank changes consistently. From an
analyst’s perspective, consistency of the interestingness mea-
sure is decisive.

Atblock 514, the change-points are coordinated. Typically,
there is a lot of output from the change-detection procedure.
An exemplary method for coordinating changes can identify
change-events as graph nodes, create edges between nodes
that share words and/or metavalues, run a clustering algo-
rithm, and output a measure of interest ranked list of clusters.

In addition to the above, an optional bigram check can be
implemented. Changes often occur for different words at the
same time but for different reasons. Metadata do not always
exist and may not be sufficient to separate node clusters. A
bigram check can be used to only add edge connecting events
with distinct words if bigram (document co-occurrence) fre-
quency exceeds threshold. The bigram check is an effective
filter against spurious combinations. The bigram check pro-
vides an unbiased estimate of true frequency of arbitrary
bigram from merged priority-weighted samples of consoli-
dated documents. The bigram check is efficient and reliable
and yields no false positives. Most false zeroes have true
frequencies are below threshold values.

Atblock 516, the results are output for visualization. Visu-
alization can be in the form of a graph, plot, table, or other
visualization output put on one or more output devices 116.
The method 500 can end.

Provided below are two exemplary models, a piecewise-
constant lexical occurrence model and a piecewise-linear
lexical occurrence model. These models are provided for
further explanation of the aforementioned systems and meth-
ods and are not intended to limit the scope of the appended
claims.

Exemplary Piecewise-Constant Lexical Occurrence
Model

A. Text Data Stream

In one embodiment of the present disclosure, a piecewise-
constant model is used to detect and coordinate changes in
lexical items. In this embodiment, a typical source of lexical
items, structured into documents, each labeled with a time
stamp and optionally with metadata is considered. An
assumption is that each document contains a set of lexical
items that are of interest. In some embodiments, a prescribed
vocabulary is used. In other embodiments, an open-ended
vocabulary is used. An open-ended vocabulary can be
acquired, for example, as part of the analysis. In still other
embodiments, a vocabulary can be seeded with lexical items.
The internal structure of each document can be ignored,
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thereby treating each document or the collective whole of
documents as a set of words. Exceptions can include lexical
items of interest that are either n-grams or non-local conjunc-
tions of words, in which case the vocabulary of these can be
prescribed in advance.

A system of the present disclosure can be used in either a
retrospective mode or a streaming mode. In retrospective
mode, a corpus of text files is presented for end-to-end pro-
cessing. In streaming mode, a summary file (previously gen-
erated by the system) is presented together with the most
recent data. A new or updated summary file can be generated
together with the output of the change-detection algorithms.
The summary file can contain enough information about the
history for the system to be able to reproduce the results as
though it were done retrospectively, but in far less time. Data
can be carried forward from summary file to summary file
until a time horizon is reached which can depend on recent
change-points, so the summary file does not grow without
bound.

In either mode, the system creates regular bins of data, for
example, daily, weekly, monthly, yearly, etc. The system can
ignore the arrival time of each document within each bin. For
each bin, the system can obtain frequency data: numbers of
documents labeled with particular metavalues, and numbers
of' documents labeled with particular metavalues and contain-
ing particular words. The system can ignore multiple occur-
rences of words within documents. In many instances, the
presence of a word in a document is more important than
repetitions thereof because repetitions often add little further
information.

Text streams always suffer from missing data. For this
reason, the system does not make any assumption that suc-
cessive bins correspond to regular time increments. If succes-
sive bins do correspond to regular time increments, the sys-
tem can be tolerant of bins that are empty or that contain no
data for particular metavalues.

The system analyzes frequencies of lexical items relative to
documents. If the number of documents in each bin varies
substantially then this can be separately tracked, but of
greater interest here is the content of these documents. This
makes the analysis more robust to missing data.

B. Poisson Likelihood

By way of example, consider a stream of bins of docu-
ments, containing n ,,, documents labeled with metavalue m in
the bin att, where 1=m<M and tis discrete: t=1, ..., T. Let the
(unknown) probability that a document labeled with
metavalue m in the bin at t contains word (or lexical item) w
be p,, ., and the measured number of documents labeled with
metavalue m in the bin at t that contain word w be f, ..
Assume a Poisson model for this quantity, i.e.

fwthPOi (nmtpwmt)

where the present disclosure temporarily conflates the ran-
dom variable with the measured value.

In one embodiment, the Poisson parameter p,,,,,, is piece-
wise-constant in time. Let there be I time segments where the
ith segment starts at s, and ends at e=s;, -1, with s;=1 and
e,=T. Assume for now that this time-segmentation is known.
We also define e,=0 and s, ,,=T+1 for convenience, and s,,
i=2, ...l are referred to below as change-points. Let T, denote
the time range [s,, e,], and define

i

o
Noni = Z”mra Fromi = wamr

1=s; 1=s;
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For word w and metavalue in the overall log-likelihood is
provided by equation (1), below.

T (65)]
= > smelnlltme Prom) = o Prome = 1 Foms D)
t=1

For the ith segment, let p,,,,, be equal to the constant rate r.
for all teT,; then the maximume-likelihood estimate of r

wmt

wmt 15

and using this estimate for each i the log-likelihood becomes
equation (2), below.

1€

0L = 3" " i 0tFrom) = FneFmi = 10 fme )]

i=l t=5;

@

T

Funs{18(57) 1) st~ o)
m =1

The second term in equation (2) does not depend on the
model or segmentation and can be treated as constant during
the optimization.

C. Multi-Phase Periodic Modulation

The subscripts w and m are dropped hereinafter for brevity.
Suppose that for a word w and a metavalue m, there is a
periodic modulation where each bin t is labeled with a phase
p from some set P. For example for daily binning P=
{Monday, . .., Sunday}, or for hourly binning P={0, ..., 23}.
More complex forms of cyclic behavior can also be accom-
modated. There is no requirement for a fixed period on t
because of the possibility of missing data or, for example, to
accommodate for a monthly variation and the fact that the
months have unequal length. In this embodiment, the present
disclosure assumes that the time-segmentation is known. Let
T, denote the subset of T with phase p, and T,, denote the
subset of T, with phase p. Also let

Np:Zn,,Ng):Zil‘n,,fork:O,l

Ty Ty
Fom Yo te= 3 5
Ty Ty,

In this embodiment, the periodic effect can be represented as

pa,r;forteTy,

where q,20 is common for all segments. Because only IPI-1
of'these values are independent the present disclosure sets the
largest equal to one, and if all the remaining g, also equal one
then there is no periodic effect. The present disclosure can
also map the phases to a smaller set where the values of q,, are
similar. For daily binning, for example, it has been found that
different behavior is seen at weekends compared with week-
days, but the weekend-days are similar to each other, as are
the weekdays. P is then binary. This mapping can be discov-
ered automatically using a dynamic programming algorithm
that optimizes both the final number of phases and the map-

ping.

10

25

30

35

45

50

55

60

65

12

Now the log-likelihood equation (1) becomes (ignoring the
constant term) equation (3), below.

I 3)
L= " [fln(gyr) —ngyn]
i=l peP1eTy,
I
= > [Fyplnigpr) = N g,r]

i=1 peP
To optimize the model we maximize with respecttor; and g,,:

dInL
ar;

-2 [ -]

which is zero when r, is represented as shown below in equa-
tion (4).

@)

Z N(O)

peP
Also

dInL
dg,

I
F.
= [ -win]
qp

i=1

which is zero when

Fp
9p

is represented as shown below in equation (5).

N(o) F ®)

Z Nl(r(r)l)qm ’

meP

It I
(0)
AP

These may be solved for the IPI-1 independent values of q,,,
and hence the present disclosure obtains {r,},_,  ,using
equation (4). For a two-phase periodic modulation, equation
(5) transforms into a polynomial equation of degree I for the
unknown g, which can be solved exactly for I=4 or numeri-
cally for any 1.
D. Dynamic Programming Optimization

Inthis embodiment, the present disclosure assumes that the
time segmentation (equivalently the set of change-points s,,
i=2, ..., 1) is unknown, although this may not necessarily be
the case. A dynamic programming algorithm can be used to
efficiently find the optimum segmentation. The periodic
modulation parameters q,, are assumed known. The reason for
this is that these are global parameters and to attempt to
optimize these at the same time as the segmentation would
violate the Bellman principle of optimality. If {q,},.- are
unknown then the method below can be iterated: initially the
present disclosure assumes all q,=1, finds the optimum seg-
mentation, and then solves equation (5) for q,,. The method
can repeat. This method generally converges after two or
three iterations.



US 9,324,007 B2

13

In one embodiment, the dynamic programming algorithm
can be represented as follows. Let
A(J, ©) be the total log-likelihood (excluding the constant
term) for an optimal J-segment model on 1=t=rt,
B(, T) be the location of the most recent change-point
(start of segment J) for this model, and
L(s, T) be the contribution to the log-likelihood for the data
from s to T inclusive, assuming a constant Poisson inten-
sity optimized on that interval, and ignoring the constant
term.
Then from equation (3), the present disclosure derives equa-
tion (6), below.

- ©)
Ls, 7 =D 3 [hlngphs) — maphy]

peEP t=s
Ty

And, from equation (4), the present disclosure derives equa-
tion (7), below.

o

W,

Py = =
dp >
=s

peP te Tp

An exemplary method the exemplary dynamic program-
ming algorithm is illustrated below.
1) Initialization
I<1
2) Recursion
Foreacht=1,...,T
a)A(l, ©)<-L(1,7); B(1, 7)1
b) Foreach J=2, ..., I+1

A, T) « {A(J =1, s- 1)+ Ls, 0)}

max

2=s=T
B(J-1,s-1>0

sig(s)

B(J, t)«—corresponding argmax s, 0 if none
¢) If B+1, ©)>0 then I«<-1+1
3) Optimum Segmentation

Foreachi=L ..., 2, s,<B(,s,,,-1)

In step 2(b),if a J-1-segment model exists on [1, s——1] (for
some s>1) then the latest segment on [s, T| can potentially be
appended to it giving a J-segment model on [ 1, T]. The restric-
tion sig(s) denotes that the potential change-point at s satisfies
both the criterion of significance and that of interestingness. It
is these criteria that limit the number of segments I discov-
ered: it is not uncommon for no significant changes to be
discovered, in which case the procedure terminates with I=1.

This procedure is optimal: recursively, the optimal seg-
mentation into segments on [1, T] must be given by the
maximum over s of the optimal segmentation into -1 seg-
ments on [1, s—1] combined with a single segment on [s, T].
And, no segmentation into less than I segments is expected to
give a higher likelihood than the optimum for I.

Various additional quantities are also stored during step
2(b) for recovery during the back-trace for the optimum seg-
mentation, including the model parameters for the Jth seg-
ment [s, T| (which for the piecewise-linear model will be
4 ,,b,,, and the measures of significance and interestingness for
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the change-point at s. These quantities are then available for
output at the end of the procedure.
E. Significance Test for Change-Points

In an exemplary test for significance of a potential change-
point at s, let s,,=B(J-1, s-1) be the start of the previous
segment J-1, and e, ,=s-1 be segment end. In one embodi-
ment, the estimated rate t, equation (7) can be significantly
different from that for the previous segment, which can be
given by equation (8), below.

€j-1 (8)
fr
5 =51
Fy-1= o1
E gp 2 M
=sy-1
peP €Ty,

These two proportions can be compared using standard meth-
ods, for example, a 2x2 contingency table using Fisher’s
method for small frequencies and the chi-square test for large
frequencies. If some q,=1 then the denominators can take
non-integer values, but the nearest integer can be used.

F. Measure of Interest for Change-Points

The most significant changes are often not the most inter-
esting ones. If a word (or more generally a lexical item) is
relatively frequent then changes affecting it are likely to be
significant. However, changes affecting less frequent items
may be of greater interest to an analyst of the data, in which
case it is inappropriate to rank the items by significance level.
For this reason, the present disclosure can use a separate
criterion of interestingness, in addition to significance, both
as a test for acceptance of a potential change-point and as a
ranking criterion. A measure of interestingness provided
herein is based upon information theory.

The null hypothesis is that there is no change in rate at s,
that is, r =t , ;. The present disclosure can test this hypothesis
to measure both significance and interestingness using the
estimated values from equation (7) and equation (8). The
principal difference between these two measures can be sum-
marized as follows: if the null hypothesis is false, then as the
amount of data increases, the significance test statistic
increases in magnitude without bound, and the measure of
interest converges to a finite value depending only onr,, and
Iy

The degree of interest of a change in rate (fromr;, tor,)
can be measured by the amount of information conveyed by
this change. To evaluate this, the present disclosure can com-
pare two possible models on the latest segment [s, T]: the
model derived for that segment (r,) and the model extrapo-
lated from the previous segment (r ; ;). The present disclosure
can define the following three variables:

W: Bernoulli random variable for presence of word within

a document,

M: Bernoulli random variable for selecting between the

two models: O forr, ,, 1 forr,,

T: Discrete uniform random variable taking a value from s

toT.

The conditional mutual information between W and M
given T can be defined as shown below in equation (9)

(W MIT)y=H(WT)-H(WIM,T) ©
where H(*l*) is conditional entropy:
H(NX)=-2.2, P(x.y)log, P(ylx)

I(W; MIT) measures the amount of information regarding W
brought by knowledge of M that is not already contained in T.
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A reason for adopting this definition conditional on T is that
this definition also covers the case where the segments are not
constant but involve trends. For the piecewise-constant
model, T conveys no information about W. Let P(M=1)=6,
and L =t—s+1 be the length of the Jth segment. If the variables
W, M, T are independent the joint distribution can be given by

(1-r;-)(1-6)

EW=0,M=0
Ly
(-8
% it W1, M=0
PW=w,M=mT=1)= y
1 =rpo .
A EW=0,M=1
Ly
i fwol, M=1
L nrELaE

From the joint distribution, the conditional entropies can be
derived and substituted in equation (9) as shown below:

HNT)=HOr+(1-6)r51)

H(W\T)=6H(r)+(1-6)H(r;.,)

where H(*) is the entropy function:

H(p)=p logop-(1-p)logy(1-p)

Mutual information can be normalized. An exemplary mea-
sure of interest can be defined as provided in equation (10),
below.

L+wiIW; M| T
HW|T+w

(10)
by gy =

Equation (10) can be evaluated using the estimated values t ,
t,, from equations (7) and (8) with 6=V4. It can be appreci-
ated that I, . =0, with I, =0 r/,,. Also, I, . with
L, 1070, 11 or vice versa. The parameter v can
control the sensitivity of the measure for infrequent events;
for example, as the value decreases, the sensitivity of the
measure increases. A value w=0.1 is a good compromise in
practice. A desirable feature of the interestingness measure is
that it gives greater weight to a small increment from close to
zero than it does to the same increment from higher up that
has less novelty value, as illustrated in the following table:

I, 1y 1000x 1, .\
0.0 0.001 5.181
0.1 0.101 0.004

A candidate change-point at s is accepted (sig(s) in equa-
tion (8)) if the significance measure and this measure each
reach required thresholds.

G. Time and Space Requirements

If we initially create the following as linear-time arrays for

1=t=<T and peP, as shown below in equations (11) and (12)

T T (11)
Fo=) fuFp= )k
=1 =1

Ty
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-continued

s (12)
N = Z *n,, for k =0, 1

t=1
teTp

and define all equations (11) and (12) as zero for ©=0, then
equations (6) and (7) become equation (13) and equation (14)
as shown below.

Lis, ) = 3 I0gpP ) (Fep = Forp) = gy V9 = NO 1 (49

peP

Fr—Fyy

fee———————

0 0
D@V =N )
peP

14

With this formulation, the recursion step is ~O(T>) in time.
The space requirements are quite modest: in addition to the
above linear arrays, A(e, ¢) and B(s, ¢) are each ~O(L,,,,, 1),
where I, is the maximum number of segments permitted.

Piecewise-Linear Lexical Occurrence Model

A. Poisson Likelihood

If the Poisson probability with which a lexical item occurs
in a document (p,,,,,,) trends gradually up or down over time,
the piecewise-constant model can represent this as a flight of
steps, which is suboptimal. Trends can be accommodated by
assuming more generally that p, . is piecewise-linear. As
above, it is initially assumed that the segmentation is known.
Again, the subscripts w and m are dropped for brevity, and
allow for a periodic modulation.

For the ith segment, let

p~=q, forteT,

where r=a+b,(t—e,_,), with e,_;=s,—1 being the end of the
previous segment. For a constant segment the coefficient b, is
zero. The log-likelihood equation (1) becomes equation (15),
below.

InL = (15)

I
SN 3 Ahlnlgp @ + bile - e 1 )]~ negplai + bilr— e )} +

i=1 pePreT;p,

T
> [t~ In £, )]

t=1

Again the final term does not depend on the model or
segmentation, and is the same constant term as before. Taking
the partial derivative with respect to q,, equation (15)
becomes equation (16), below.

BlnL_ i [ (16)

5= £—”r(ﬁli+bi(l—€1>1))] =
g,

q
=1 1eTy, - 1P

1

F,
q—p - Z [(a; - biei—l)Ni(;?) + b;N;‘j)]
Poi=l

Given a segmentation and a model in the form
{a, b}, pthepresent disclosure can obtain g, by setting
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equation (16) to zero. However, maximizing equation (15)
directly withrespectto {a,,b,},_, ,isnotassimplebecause
the algorithm would involve additional iteration loops and
would be too slow.
B. Trend Segment Parameter Estimation

1) Weighted Linear Regression:

Because the log-likelihood is hard to maximize for a,, b, the
present disclosure can use weighted linear regression instead.
Consider the regression model

a+bit—e) =y = I
heny
where

h=q, forteT,

Setting the derivatives with respect to a, and b, of the total
weighted squared error, as shown below in equation (17),

Q= Zvr[ai +bi(t—ei)—y)* an

teT;

to zero and solving yields equation (18) and equation (19),
below,

(18)

(Z (T — ei—l)z)(z Vr}’r) -
(Z Vel = ei—l))(z V(i = ei1)yy)

D

B (Z Vr)(z V(I — ey )yr) - (Z v (r = ei*l))(z Vryr)

= D

;=

a9

where,

D=3 ) vt—e = (Y vt~ o))

and all summations are over teT,.

From the exemplary Poisson model,
Var(f,)=np, hence

ft~P(ntp t) 50

e Pt P
Var(y,) = =
' (hr”r)z hrznr

Setting v,xn, therefore approximately equalizes the variance
as well as giving greater weight to bins containing more data.
In fact we use

so that if all n, are equal then all v=1.
Notation: Let

T = Z vk fork=0,1,2 20

reT;
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D=TOT? _ (T‘_m)Z 2D
Ry = E V”kf’ for k =0, 1, 5 § V’f’ 2
ﬂ

1Ty, Tip !

(T2 - e TORD (1Y - e TR @3
Uy, = -

1Ry - TR @9
Vip = )

Then the regression parameters equations (18) and (19) can
be shown to be

Vip @5

Also, substituting the regression parameters into equation
(17), expanding and using the same definitions leads to the
following expression for evaluating the residual sum of
squares:

RSS = (8 — ey @;)2 T + 208 - eiy by o T + @6

~2 1 (S; ~
b‘-T‘-(z)+§ —{——ZbR‘” Z(ai—ei,lb;)ng)}
ap | gp
peP

Setting equation (16) to zero and substituting for the
weighted-least-squares estimates 4,, b, also enables us to re-
estimate the periodic modulation parameters q, from these
quantities to derive equation (27), below:

i 1 27
{Z [(Uin = €ie1 VinING + Vin N}yl = Fpépm}q— =0
i=1 n

for all peP, where §,,=1 if p=m, otherwise zero. The nullspace
of'this matrix (found using a singular value decomposition) is
spanned by the vector of reciprocals of the nonzero periodic
parameters and, once found, the nonzero periodic parameters
can be scaled so that the largest is equal to one.

2) Likelihood Adjustment:

If we assume a,=a,+€, b,=b,+d substitute into the contribu-
tion to the log-likelihood equation (15) from the ith segment,
set the derivatives with respect to € and 8 to zero, and expand
to first-order in € and d, then we get the following pair of
equations that are linear in these increments:

Sl
L+ bit—e;1)

filt—eiy) (1 _

b + bt —eiy)

Z 4N

peP

e+d8(t—ei_y) ”

b +bir—eiy)

1 0
= Z qp(Ni(p) - eilei(p))
peP

teT;

The equations immediately above can be solved for € and 8
giving improved estimates of the parameters, and the process
can be iterated. Generally, this process converges after one or

e+ 8(t—e;y) ]}

4 +bit-eiy)
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two iterations. The present embodiment now has estimates of
a,and b, that maximize the likelihood; however, the likelihood
is maximized at the expense of additional summations over
the data. Fortunately, the weighted-least-squares estimates
are usually very close to the maximum likelihood estimates,
so this step can be omitted if computational efficiency is a
priority.

3) Segment Constant Vs. Trend:

The decision as to whether to treat the latest segment span-
ning [s, T] as constant or trend can be based on any combina-
tion of the following exemplary criteria:

Absolute value of slope parameter b,

Change in r, over the length of the segment

Significance of regression slope

Likelihood using trend model compared to that for con-

stant model.
In practice, each of the aforementioned criteria has been
found to be useful. In general, each constant segment intro-
duces one less parameter into the overall model, resulting in
a simpler description of the data.
C. Dynamic-Programming Optimization of PLM

The present embodiment can assume that the segmentation
is not known, although this is not necessarily the case. The
optimization proceeds similarly to that described above for
the piecewise-constant model. If the periodic modulation
parameters q,, are not known, as is usually the case, then the
procedure is to initially assume all g,=1, find the optimum
segmentation and model, re-estimate q,, using equation (27),
and repeat. Two or three iterations of this process are gener-
ally sufficient.

The likelihood contribution L(s, T) for the Jth segment [ s, |
is obtained using equation (13) for a constant segment. For a
trend segment, equation (28) as shown below is used.

Lis,7) = (28)

E E {f,ln[qp(&/ +hyt—-s+ 1))] —n;qp(&J +hyr—s+ 1))}
peP t=s
Ty

The present embodiment defers consideration of how to
express this in terms of differences in cumulative values at
segment endpoints. The regression parameters and the
residual sum of squares can all be evaluated using linear-time
arrays for the quantities defined in equations (20) and (22),
namely equation (29),

T s L 2 (29)
7 _ Z o RO vl f; o - Vil f
T it Rep n’ > OTp ”12
=1 =1 =1
Ty Ty

for 1=t<T, with all of these zero for T=0. Since the Jth seg-
ment extends from s to T inclusive, equation (29) becomes, for
example,

LO=TO-T,\®, R, P=R PR,

and so forth. All the quantities in equation (20) through equa-
tion (24) can be obtained in this way, and also the regression
parameters 4, b, from equation (25), the RSS from equation
(26), and the periodic modulation parameters from equation
@7.

With the segment model and likelihood available for [s, ],
the optimization can proceed once the restriction sig(s) is
defined for segments that may involve trends.

10

15

20

25

30

35

40

45

50

55

60

65

20
D. Significance Tests for PLM Change-Points

1) Difference Between Regression Lines:

Let s=s, e, ~t be the start and end of the Jth segment,
s,,;=B(J-1,s-1), e, ,==s-1 be the start and end of the previ-
ous segment. Also define e, ,=s , ,—1. There are two tests can
be used for each candidate change-point. A first test can be
used to decide whether a significant change exists. A second
test can be used to decide what form the significant change
takes.

The first test may be used when at least one of the two
segments is a trend. The null hypothesis (H,) is that there is no
change. That s, the Jth segment is a linear extrapolation of the
J-1st. A single regression line can be first fit through both
segments as described above and obtain the residual sum of
squares RSS, using equation (26). The alternative hypothesis
(H,) is that there is a change-point at s, and RSS, can be
obtained as the sum of the residual sums of squares over the
two segments, fitted separately. Then, the F-statistic, below,

(RSSo — RSS1) /2

=~ F,,_ _ der H
RSS1[(es —sy1—3)  besmss-173 WG

defines the critical region. The number of degrees of freedom
in the denominator is n-m where n=e ,~s ,, 1 is the total num-
ber of data points in the two segments, and m=4 is the total
number of estimated parameters in the separate models.
Although this test and a similar one in the next section assume
normal residuals, the tests have been found to nevertheless
work well in this application.

2) Difference Between Regression Slopes:

If a change-point involving a trend is significant then the
next question that needs to be addressed is whether the change
involves a discontinuity (as for the piecewise-constant model)
or merely a corner, in which case the slope changes but the
intercept does not. A corner introduces one less parameter
into the overall model, resulting in a simpler description of the
data. To test whether a change involves a discontinuity, a
modified two-phase linear regression can be used. The modi-
fied two-phase linear regression can incorporate the weights
v,. The mull hypothesis H,, is that the regression lines for
segments J-1 and J coincide ate ;.

ay +by,(er,-e5)=a,

The above constraint can be incorporated into the weighted
squared error criterion using a Lagrange multiplier:

e

[

vila; + bt —ej1) =y >+ 2ay —ay_1 —by_1(es1 —es_2)]

SJ

J
- 3

N 1z

Setting the derivatives with respect to the four parameters and
A to zero leads to the following system of equations for the
optimum solution:

5 2
by-1 = (c22¢13 — c12¢23) / (€11€22 = €13)

a1 =Y =biaTo + =5
7)o

5 2
by = (creas —cracr3)/(crican = cpp)

a, =7’_E’T’_W
J



US 9,324,007 B2

-continued
where
(0) (0) (1 0
_ oI T - T
o) DA e R )
T;° +T; Ti% T;
1 1
(0) )
DIt PR WA
peP kL — peP 9r
Y= © ¥y = ©)
Ti% T;

d =T, 1—ey1,dy=Ty—e;1,d5=Y; -V,
2 1)
en = T8 =10 T ooy +wd}

cpp = T;z) - T;I)T/ + Wdzz, Ccl2 = —Wdldz

1 _
ci3 = Z —(RP,, ~ Y, RD, ) - wdsdy
peP qp

1 —
23 = Z —(R(le) - Y/R(J(;)) + Wd3d2
peP qp

A=wlds +diby_y - daby)

All these quantifies can be obtained from the arrays defined in
equation (29). From this solution, equation (26) gives RSS,
which is compared with RSS, using

RSSo — RSS|

= ~F,,_ _ der H
RSS1[(es —sy1—3)  besmss-173 WG

If a change-point is determined to be continuous with a
corner then the two-phase regression model can be adopted,
as determined above for both segments. However, if two
consecutive change-points consist of such corners then the
middle segment would inherit two distinct models from the
separate two-phase regressions, and these would have to be
reconciled. So, instead, the present embodiment makes an
adjustment to the model for one segment only, depending on
the type of the Jth segment, as shown below.

Trend: Set=a ’J:dJ,1+l;J,1(eJ,1—eJ,2)

Constant: Set=b =l rdy ) e 1—e;)

In the first case the intercept of the Jth segment is adjusted to
match the end of the J-1st segment, whereas in the second the
slope ofthe J-1st segment, which has to be atrend, is adjusted
to match the intercept of the Jth segment. Although slightly
suboptimal, this method can handle any number of consecu-
tive connected segments. Within the dynamic programming
method, if ', is set in this way then because this affects the
previous (not the current) segment it can be recorded in the
main loop as

E;fl(J, D e { @/J, if continuity adjustment made
0

otherwise

During the back-trace, if this value is nonzero for the Jth
segment then it overrides the usual value recorded for the
J-1st.
E. Measure of Interest for PLM Change-Points

In addition to passing the significance test, a potential
change-point can again satisfy the interestingness require-
ment based on conditional mutual information (equations (9)
and (10)). The present embodiment now involves four model
parameters as shown below in equation (30).
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(L+wWIW; M| T) (30)

L =
HWI|T) +w

-1:by150)by

The two models for the Jth segment [s , €] are derived for that
segment (a, b ;) and extrapolated from the preceding segment
(a,.;, b, y). If the variables W, M, T are defined, as defined
above, then the joint distribution is now given by:

PW=wM=mT=01=

(I—ay1=byj1(t—e;2))(1 - 0)

ifW=0,M=0
L
4+ by (t—ey )1 -6
(aj1 +by_1(t—e;2)X ) W1, M=0
L,
l—a;—byr—e;_1))0
(1—a;-b;(t—e;1)) W0 M=1
L
by(t—ej_1))0
(as +by(t—e5-1)) Wl M=1
Ly

for t=s,, . . ., e, where [ ~¢,~s+1 is the length of this
segment. The conditional entropies can then be obtained, as
shown below.

1<
HWI|T)= L_,Z H[0(ay +bs(t—ej_1)) + (1 =0)ayj-1 +by_1(t —e;-2))]

I:SJ
HWI|M, T)=

1
T2 0@ +bsa=es )+ (L= OH (@ + by (= es-2)]

t=sy

0 Here, again, H(*) is the entropy function. The aforementioned

equations are evaluated using the estimated values &, , b,
4, b, and with 6=5. Tt should be noted that the evaluation
involves six terms (two for each H(*)), all of which can have
the following general form:

Z (@ + pnlog, (o + B

t=s

for various values of o and 8. Because the sum over t could
degrade the overall algorithm from quadratic time to cubic
time the present embodiment can eliminate this possibility by
applying the Euler-Maclaurin formula in the following form:

1
[ fodi= w22+ -

1 1
R0 _ g WO _ s _
- (fu 0 )+ 70 (CANEN

where f=f(s+ih), nh=e—s, and f,® is the kth derivative. Since
in this case s and e are integers, h can be setto 1. The following
indefinite integral (for $0) can also be used:
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2
Go () E f(a + Boln(e+ pryd 1 = (;_ﬁ’ +ar+ gl‘z]ln(oz+ﬁt) - %l‘ - gtz

and hence obtain:

Z (o + Boln(e + pr) =

t=s

Gape) — Gop(s) + %((w + Bs)n(e + Bs) + (o + Be)ln(a + Be)) +

w+ﬁ2)_iﬁ3( 1 1

1
Eﬁln(w+ﬁs 720" e+ Bsi? (oz+ﬁe)2)+m

All the terms on the right-hand side are evaluated at the
endpoints of the segment, and in practice the last term is
usually negligible. All that remains is to divide the result by
In(2). This makes it possible to efficiently compute the con-
ditional mutual information (equation (9)) and measure of
interest (equation (30)).

Having the measure of interest consistently defined for
both constant and trend segments brings two major advan-
tages:

1) A single threshold value can be used for all change-
points, whether the previous and latest segments are
constant or trend.

2) The measure can be carried forward into the coordina-
tion phase for weighting events that may extend over
several consecutive change-points of various types.

F. Quadratic-Time Implementation

Thus far, the following steps in the dynamic-programming
optimization of the piecewise-linear model are based on lin-
ear arrays evaluated at segment ends:

3) setting the parameters, assuming the likelihood adjust-

ment step is omitted,

4) both significance tests,

5) interestingness measure.

If the segment likelihood equation (28) can be similarly
treated then the formulation becomes a complete linear-
space, quadratic-time formulation. First recall the definitions
in equations (11) and (12), and similarly define

=Y 4,
t=1
for k-0, .. ., 11, with all F =0 for T=0. Also define

s N (31
Gis, 1) = Z filn{ay +by—s+1)

t=s

Then, equation (28) becomes

Lis,7) =

(1)

G(s, 1) =  {gplas = bits = D)ING = N& 1+ gpbs ING - N, -

peP

Ing,[Fep = Fio1 ]}
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This calculation leaves G(s, T). At the moment the algo-
rithm is cubic-time because of this term only. For short seg-
ments the cost of evaluating this is small, but for long seg-
ments it may be burdensome. Let L.=1 be a parameter which
essentially governs the maximum segment length for which
the sum in equation (31) can be evaluated directly. The
present embodiment can use a Chebyshev polynomial
approximation to In(1+x) for O=x<1 and the Clenshaw algo-
rithm to convert this to a regular polynomial, represented in
equation (32):

(B2
axt

1

K
In(1 +x) =
=

where K=11, accurate to 1x10~° throughout the domain [0,1],
which is sufficient for present purposes.
Suppose first that b >0, and define

s N (33)
Zf,ln(&, +hit—w) ifs<t

t=s

G>(w,s,1)=

0 ifs>7

ay +E/(s—1—w)
u=s—-1+4|——m
by

so that G(s, T)=G>(s-1, s, T), and | *| denotes the floor func-

tion. G>(w, s, T) can be evaluated recursively as follows:
G>(w,s8,T)=H>(w,5,V)+G>(w,v+1,7) (34)

where if u<s+L-1 then

v=min{s + L -1, 7}
H>(w,s,v)= Zf,ln(&, +@,([— w))
otherwise
v = mindu, 7}
H>(w,s, v):Zf,ln{[&/ +E,(s—1—w)]>< 1+ M}}
— a;+bys—1-w

= (FO - FO)mlay +byis— 1-w)] + Z £ln(l +x,)

t=s

where x,=b (t-s+1)/(a+b (s—1-w)). Since t=vsu, the defini-
tion of equation (33) guarantees that O<x,<1. Therefore, the
approximation equation (32) can be used together with a
standard binomial expansion to obtain equation (35), below.

v (35)
Z Fin(l +x,) =

K

~ k k

b k z
Sl S
— a;+bs—1-w) — r Py



US 9,324,007 B2

25

-continued
K

~ k
el
Ck — X
py 21/+b/(s—1—w)
Z( 1)( ]s Uy (Fn - F&7)

Although equation (35) involves a sum over 77 terms, there
are no function evaluations and empirically it turns out to be
faster than the direct evaluation of equation (31) for segment
length of 15 (see below).

Ifb <0 then the present embodiment proceeds in a similar
fashlon and only the result will be quoted. Define

& =4, +bj(r—s5+2)

b =5,

T
> filnla, + by if s <7
t=s

G<(w,s,1)=

0 ifs>t

M:T+1_{&}+@J(K—T—1)J
b,

Then G (s, T)=G<(t+1, s, 1), and recursively

G<(w,s,T)=H<(wy,T)+G<(ws,v... 1) (36)

where if T-L+1 then

v=max{r—L+1, s}

H<(wv,1)= Z f,ln(&} + E;(W— t))

=v

otherwise

v = max{u, s}
H < w,v, ) = (FO = FOn[a) + Bytw—7 - 1] +

K

k
PO LR ) YRt B
= a,+ yw—7—

Because the number of recursive function calls in equa-
tions (34) equation (36) depends on the values of4 ,, b, and not
directly on the segment time span (and in practice seldom
exceeds 2), this completes a linear-space, quadratic-time for-
mulation. To assess this experimentally the inventors used the
Magellan search query corpus. The inventors selected 20
words that occur regularly throughout the corpus (interact,
hotel, jobs, free, home, software, music, american, games,
email, computer, world, page, school, real, college, state, tv,
video, all). FIG. 9 shows the likelihood computation time for
both procedures as a function of segment length, using a
Linux server with a 3.8 GHz CPU. The end-point based
method is faster for segments longer than 15, so the parameter
L is set to this value. FIG. 10 is a log-scale plot of the average
per-word CPU time to optimize the piecewise-linear model as
a function of length of data, for both likelihood computation
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procedures. The time includes the initial linear step of creat-
ing the arrays (a little larger for the end-point based method
because there are more of them), as well as the dynamic-
programming procedure. Using the end-point based method
reduces the overall time by a factor of two for 300 data bins
and three for 1000.

Coordinating Changes

A. Step and Burst Events

The change-detection method described in previous sec-
tions typically generates a lot of output. For each word/
metavalue pair there can be a sequence of change-points
connecting piecewise-linear segments. Some of these indi-
vidual changes can be related to similar ones for many other
word/metavalue pairs. It can be undesirable to leave it to a
human analyst to have to synthesize more meaningful events
out of all these elementary changes.

It is often the case that where a subset of all the change-
points for all word/metavalue combinations have a common
cause the overall event can be visualized in three exemplary
dimensions as follows:

1) a subset W of words,

2) a subset M of metavalues,

3) an interval T of time.

Ideally, precisely synchronized change-points would be
found for the Cartesian product of the sets of words and
metavalues. However, this is seldom the case in practice.
Accordingly, the coordination algorithm can be designed
such that it is tolerant of missing word/metavalue combina-
tions and of lack of synchrony (referred to herein below as
dis-synchrony) in time.

It can be helpful to consider a new kind of event that can
cover several consecutive segments and therefore change-
points. Each of these events can have an onset phase, and can
also have peak and offset phases. The onset of an event need
not consist of a single change-point. The profiles illustrated in
FIG. 11 show various possible types of step event, each with
an onset phase shown in bold including one or more change-
points. Similarly the profiles illustrated in FIG. 12 show vari-
ous possible types of burst event, each with an offset phase
shown in bold in addition to the onset phase. All these
examples, except the second and fourth example illustrated in
FIG. 12 also have a peak phase where the rate is constant in
between the onset and offset

The overall change profile for a word/metavalue combina-
tion can, in general, include several such events in sequence:
zero or more bursts followed by an optional step. An algo-
rithm can post-process the change profiles for each word/
metavalue combination and form an overall list of these
events in the following exemplary form:
N G7N

(I)j:<wj,mj,sj,ej,lj>,j:1, L.

where

w, is the word,

m, is the metavalue,

s; is the start-time,

€; is the end-time (zero for a step event),

I, is the interestingness.
Because the onset and offset phases of these events can be
extended, the present disclosure can characterize the start-
time using the first moment of area of the profile during the
onset phase about the point t=0, and similarly for the end-
time. The interestingness of the event is based on the quantity
defined in section E. If the span of the event ¢, consists of the
segments i, <i<i, then define equation (38):
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i+l

10)= " Ly by

i=f

(38)

wherel, , _ ., isthe measure of interest for segment I com-

EVRER A . . .
pared with the previous segment, as per equation (30). This
assigns a measure of interest in a natural way to the entire
event.

There are various ways in which the present disclosure can
measure the dis-synchrony of two events, for example, ¢,, ;.
A measure using only |s,—s,|+le;~e,| may not be sufficient
because of the different forms the onset and offset phases can
take, as illustrated above. An abrupt step can get grouped with
a long trend. The present embodiment adopts the simple
expedient of also incorporating the second moments of area
of the onset and offset phases of ¢, and ¢;. The actual defini-
tion of the dis-synchrony measure d(¢,, ¢,) involves further
minor considerations which can be omitted here.

Itis logical to separate groups of step events (with e =0) and
of burst events (with e,#0). The principle can be the same in
each case. Events of form ¢, can form groups when words w;
and metavalues m, form sets W and M such that the Cartesian
product W@ M i1s substantially covered with events @, that
are substantially synchronous in time.

B. Graph Clustering

To meet the challenge posed at the end of the previous
section, the present disclosure can use a graph clustering
method. In testing, the inventors determined that metric clus-
tering algorithms did not work as well as desired because the
space occupied by the events ¢, is a metric space only in the
time dimension. It should be understood, however, that the
use of metric clustering algorithms is not precluded.

Also, it should be understood that the aforementioned chal-
lenge is not a bi-clustering problem, at least in part because it
is possible and quite common for words and/or metavalues to
be shared between distinct groups of events at different times,
and sometimes even for the same times. This is illustrated in
FIG. 13. Each * represents an event ¢, in the m-w plane (the
time is ignored but the events are assumed to be synchro-
nous). It is natural to form the distinct groups ®,, ®, even
though the word w, is shared.

So the imperative is to cluster the events ¢, placing empha-
sis on the Cartesian-product structure across the sets W and
M. The present embodiment can accomplish this by creating
an undirected graph with the events ¢, as nodes. Edges are
created between pairs of nodes (for example, ¢, and ¢,) that
satisfy one of the following three conditions (9 is a threshold):

w, =, and d(g,4,)<d
m;=m; and d(9,,¢;)=d

9,9, such that w,=w,, MM, WEW, S, and
d,.,0,)=0 for all x,ve{ijkl}
Edges therefore exist between nodes that are sufficiently syn-
chronous and that share either the word or the metavalue, or
lie across the diagonals of rectangular structures in the m-w
plane where all four corners are populated with events that are
synchronous as a group (as in FIG. 13). This third condition
turns such a structure into a clique in the graph. All edges have
weights inversely dependent on d(¢,; ¢,).

For clustering the nodes in the graph, the present disclosure
can use a procedure that reveals clusters of densely intercon-
nected nodes by simulating a Markov flow along the graph
edges.
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C. Bigram Check

1) Filtering Graph Edges:

Despite the additional discriminative leverage brought by
the metadata, it is still possible that changes can occur for
separate words at or about the same time but for different
reasons, in which case groups can be generated that are mis-
leading. Data sets without metadata are especially prone to
this phenomenon. For this reason, the present embodiment
can also perform a bigram check: for a pair of distinct events
¢;, ¢, such that w=w, an edge connecting these events to the
graph is only added if the bigram frequency for the pair w,, w;
exceeds a required threshold that may depend on w, and w,.

The bigram frequency can be defined as the total frequency
of documents containing both w, and w, over the range of data
concerned. There is no requirement that the words be adjacent
or occur in a particular order. Imposing this requirement
ensures that the two words co-occur in a sufficient number of
the source documents, without regard to metadata. This is an
effective filter against spurious combinations. It can be
expensive to compute the bigram frequency because it may be
impractical to accumulate frequencies for all possible such
bigrams during the original binning. A separate pass over the
raw data can be implemented for this purpose. Requiring a
separate pass can be slow and especially undesirable for the
streaming mode, in which case it may be desirable to process
all raw data only once.

2) Priority Sampling Scheme:

The present embodiment can resolve the aforementioned
challenge by using a priority sampling scheme through which
the present embodiment is able to efficiently obtain an esti-
mate for the frequency of an arbitrary bigram post-hoc with-
out the need for a subsequent pass through the raw data. The
general principle of priority sampling can be described as
follows: Let there be n items i=1, . . . n with positive weights
v,. For each item, define a priority q,=v,/r, wherer, is a uniform
random number on [0,1]. The priority sample S of size k<n
can include the k items of highest priority. Let y be the k+1st
priority, and let ¥ =max{v, y} for each sampled item ieS.
Now consider an arbitrary subset U= {1, . . ., n} of the
original items. It can be shown that

et

2%

An unbiased estimate of the total weight of the items in the
arbitrary subset U is therefore obtained from the priority
sample by summing V, for those items that are also in U. This
can be done for many different subsets U after forming the
priority sample.

The present embodiment employs this for the bigram
check in three stages. First, during the binning of the data the
present embodiment forms a list of consolidated documents
by filtering out stop words and words that are excluded from
the final dictionary, then re-assembling each document with
the words in word dictionary order. Metadata can be ignored.
This enables the documents to merge as far as possible. The
total weight v, of each consolidated document is its total
frequency within that bin. From this, the present embodiment
can create the priority sample for that bin as described above,
and export it along with the word frequency data. In streaming
mode, the priority samples are carried forward within the
summary file until the data drops off the time horizon.

The second step is to form a merged priority sample for all
consolidated documents throughout the data, either from all
the separate bins (retrospective mode) or from the summary
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file together with the latest data (streaming mode). For time
and space economy it may be necessary or desirable to dis-
card the tail of the sample for each bin. If this is done, the
values of ¥, can be re-assigned using the revised value of'y, so
that unbiasedness is preserved. The final step is to estimate the
frequency of an arbitrary bigram for a range of time by sum-
ming the values of ¥, for all the consolidated documents in the
merged priority sample that contain that bigram, over that
range of time. This can be done very quickly. A threshold can
then be applied to the estimated frequencies as described
above in order to decide which edges to add to the graph.

There are not expected to be “false positives” with this
scheme. If an estimated bigram frequency is greater than zero
then the true frequency must also be. However, there is
expected to be “false zeros” where the estimated bigram
frequency is zero for a bigram that does actually occur. The
inventors have measured the true frequencies for these false
zeros and found that for a sufficiently large merged priority
sample ~10° the true frequencies are typically very small and
below the threshold for acceptance.
D. Output of the Coordination Procedure

The graph clustering forms the nodes (events ¢,) into
groups. From this, the present embodiment can immediately
generate a structured output of the following form:

¢k:< {q)kj}lsjsnk:Tk’ Wk:Mk:Ik>x k=12,... K

sorted in decreasing order of I,, where for each group ®,,

i K }.1 e, 15 the set of either step or burst events as appro-

priate,

T, is the time description,

W,=U,_ "™ {ij} is the set of words,

M;=U,_, " {m, } is the set of metavalues, and

L=2_ l”kl(q)kj ) is the group measure of interest.

The time description T, can take various forms depending
on the type of onset presence and type of offset. The group
measure of interest I, is the total over that for the component
events equation (38). All that needs to be presented to the user
are the time T,, sets of words W, and metavalues M,, and
perhaps a small sample of the documents or a subset of the
priority sample. This is information on a digestible scale
which should enable the user to make a judgment about
whether this is an important event or not.

Results

A. Corpora

The following description provides some results obtained
by applying the aforementioned exemplary CoClTe proce-
dure to various corpora. FIG. 14 summarizes the essential
statistics of the corpora. The vocabulary size is the final
vocabulary after preselection. There is often a long vocabu-
lary tail of words that do not occur often enough to create a
change-point, and these are excluded. The timing information
includes model fitting (in retrospective mode) and change-
point coordination but excludes text preprocessing and bin-
ning. The inventors conducted experiments on a Linux server
with a 3.8 GHz CPU.

The time requirements have been found to be roughly
proportional to the numbers of words and metavalues and the
square of the number of bins. Sparsity also varies from one
corpus to another and makes a difference.

B. CHI Scan IVR Analysis

The first corpus consists of logs of human/machine auto-
mated dialogs. CHI Scan is a tool for reporting, analysis and
diagnosis of interactive voice response (IVR) systems. IVR
systems can operate using natural language or directed dia-
log. Natural language allows a caller to speak naturally.
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Directed dialog requires a caller to follow a menu which, in
some cases, only permits touch-toned responses. Designing,
monitoring, testing, and improving all IVR systems is predi-
cated on the availability of tools for data analysis. CHI Scan
is a web-based interactive tool for this purpose. In addition to
providing both high-level and in-depth views of dialogs
between callers and automated systems, CHI scan provides
views of changes occurring over time. Changes may be either
planned (via a new release of the system) or unplanned.

The CoClTe algorithm can be incorporated into the CHI
Scan software framework and like software using the stream-
ing mode. Each document is a complete dialog between a
caller and the IVR system. Changes in relative frequencies of
the following are tracked:

Prompts: Messages played to the caller

Responses: Callers’ choices in response to prompts

Call outcomes: Transfers (to human agents), hang-ups

(caller ends the call), and end-calls (system ends the call)

KPIs: Key performance indicators of progress made within

the automation.

These can be important metrics for evaluating and tracking
IVR systems over time for providing invaluable insight. No
call metadata are used at present for the CoCITe algorithm.
However, for tracking the responses the relevant prompt is
treated as a metavalue. This has the effect of conditioning
each response on a preceding occurrence of the prompt,
thereby ensuring that the distribution of responses is normal-
ized. This does not preclude the future use of call metadata as
well. Three versions have been implemented, using hourly,
daily and weekly binning. FIGS. 15 and 16 illustrate using
examples of responses to the initial greeting prompt at the
start of each dialog, for two applications using daily binning.

FIG. 15 shows two of the responses to the initial greeting
prompt for an IVR application for an electronics company,
plotted over a 90-day period. The dots are the actual data and
the lines show the fitted segment model. The lower plot of the
pair shows a pronounced weekly variation. Two periodic
phases are sufficient: weekday and weekend. Both plots show
step changes on Jun. 7 and 28, 2007. Because the responses
are normalized, if one goes up then others must go down, and
the remaining responses (not shown) cover the remainder of
the shift in the distribution during that period. An image map
on the CHI Scan web page is enabled, so the user can get
further details and navigate to particular points just by using
the mouse.

FIG. 16 shows a similar plot for “flight status” requests at
the initial greeting for an airline application. A regular weekly
modulation is superimposed on a four-segment model. The
first two segments represent a gradual increasing trend in such
requests during the 2006 holiday season, followed by a con-
stant phase through Feb. 14, 2007. On this date there was a
snowstorm in the north-eastern United States that caused a
burst in requests for flight status that quickly decayed back to
the normal level. This phenomenon is captured by the final
two segments. The rather noisy signal (sequence of dots)
therefore has quite a simple description in terms of the piece-
wise-linear model with the periodic cycle. There are some
finer-grained phenomena that account for the imperfect fit in
places, but the threshold settings prevented the fitting of more
fragmentary segments. It should be noted that the illustrated
plot are tracking relative responses. Events such as the snow-
storm often cause an increase in call volume as well as a shift
in the distribution of call intents that can be tracked sepa-
rately.

C. Customer Care Agent Notes

When a customer talks to a human agent, the agent typi-

cally makes notes on the reason for the call and the resolution.
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These notes are a mine of information on why customers are
calling, but are usually far too numerous to be read individu-
ally. These notes also tend to be rather unstructured, contain-
ing many nonstandard abbreviations and spelling errors.
However, metadata about the customer are generally avail-
able. Detecting and structuring the changes that occur within
such streams of notes can provide useful intelligence to the
organization. FIG. 17 illustrates notes made during August
and September 2005 by customer service representatives
talking with domestic residential telecommunications cus-
tomers. For each note the customer’s location is a useful
metavalue. In order to avoid splitting the data into too many
sub-streams, with consequent loss of power, the state is used.
FIG. 17 shows the top ten clusters including start date and the
numbers of words and metavalues (states) in each cluster.

Most of the clusters represent routine traffic, but cluster 6
(Hurrican Katrina) is unusual. Customers in the Gulf Coast
region who were affected by this disaster had special needs.
Many change-points therefore emerge, some involving
entirely new words (e.g. Katrina), some involving pre-exist-
ing words which increased in frequency (e.g. hurricane), and
some involving common words being used in new combina-
tions (e.g. home, destroyed). The coordination procedure
groups these changes as follows:

Metavalues: Louisiana, Mississippi

Words: hurricane, Katrina, hurrican, house, affected,

home, victim, destroyed

The word list shown is a subset. Note the mis-spelling
“hurricane,” which occurs often enough to be picked up by the
procedure. Tracking this event over time we see it gradually
tail off during the month of September, 2005.

D. Search Query Data

Queries made to internet search engines can be treated as
documents for this analysis. Such queries tend to evolve over
time, both cyclically within the 24-hour period, and over a
longer time-scale as changing frequency of search terms
reflects evolving interest in diverse topics. FIG. 18 illustrates
data acquired from the Magellan Voyeur service. This service
displayed the last 10 queries to the Magellan search engine,
the list being updated every 20 seconds. The list was sampled
and archived at 10-minute intervals from 1997 through 2001
(a total of 1.7 million queries containing 0.5 million distinct
search terms). There are no metadata because only the query
text was revealed. The illustrated results uses both weekly
bins for longer-term changes, and daily bins for finer resolu-
tion.

Some rather generic terms (e.g. computer, school, jobs,
weather) show no change in rate throughout. Some show an
increase in frequency (e.g. hotel, Internet, IM), others a
decrease (e.g. chatroom, telnet). Many search terms show
bursty behavior, and for grouping these in the absence of
metadata the bigram check is helpful for forming coherent
groups. Some search terms show an increase in frequency at
the same time (e.g. Linux and mall in November 1997) but for
different reasons, and the bigram check helps to prevent these
from being grouped together. Some groups of burst events
generated by the coordination procedure are shown in FIG.
18.

The profile of the burst event (using daily data) for the
death of Princess Diana is shown in FIG. 19. Note that there
were no data for 31%° August (the date of the accident) and 1
Sep. 1997 so the event first appears on 24 September. The
initial burst for the word “Diana” is followed by a sharp
decline modeled by a linear trend, with a corer on 11%
September and a further step down on 9% October. The profile
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for the word “princess” is similar. In a situation such as this,
an exponential function can be a better model than the piece-
wise-linear one.

E. Enron Email Corpus

Turning now to FIG. 20. The Enron email dataset consists
of roughly 0.5 million messages belonging to a group of 150
users. For our purposes the corpus can be considered a set of
time-stamped observations (email messages) along with the
meta-variable of document ownership. This data presents a
challenge to analysis for a number of reasons. Most impor-
tantly, email is readily forwarded, posted to lists, embedded
with replies, and other operations which break assumptions of
document independence. Direct repetitions of message con-
tent are common. This greatly exaggerates topic impact on
word-level statistics, as well as leading to the inclusion of
non-topical words that happen to be in the initial message and
are then copied and recopied. Experiments on automatic
foldering of this corpus have revealed similar artifacts.

Thus, change clusters in the full Enron corpus are typically
driven by corporate mass mailings (all employees receive a
copy) or by targeted advertisements (multiple near-identical
messages sent to a particular user). Such effects are valid
changes to the language model, but not particularly illumi-
nating as to user activity. To eliminate non-informative
“changes” driven by junk mail, we tried various forms of
preprocessing. Each user is associated with a number of
online identities. We report some results from analysis of
messages which have both sender and recipient fields includ-
ing identities of members of the user group (distinct mem-
bers, since self-mailings between two accounts are common).
Junk email is no longer an issue. Repeated messages still
occur; it is difficult to distinguish between identical and near-
identical documents (e.g. a copy in the deleted items folder
versus a reply with a few new words attached to a copy of the
old content). FIG. 20 illustrates the top ten clusters from
CoClTe on messages with date-stamps in the year 2000.

FIG. 21 is a plot illustrating data received from a customer
care IVR. This plot illustrates daily and weekly periodic
variation for hourly data over a 90-day period and 14-day
period, respectively. In one embodiment used to generate the
dataillustrated in FIG. 21, the CoCITe tool 202, 302 is used to
detect and coordinate patterns within IVR responses. FIG. 22
is a plot illustrating responses received from a customer care
IVR during a 7-day period during which incoming callers are
prompted with a message, “To pay your bill or get other
bill-related options, Press 1. To check your services, Press 2.
To get help with services, Press 3. To report a lost or stolen
device, Press 4. For Sales, Press 5. For help with other issues
including the option to speak with a customer service profes-
sional, Press 0. To repeat these options, press *”” The illus-
trated responses are a “0” response requesting the call be
transferred to a customer service professional and a hangup
response. In one embodiment used to generate the data illus-
trated in FIG. 22, the CoCITe tool 202, 302 is used to detect
and coordinate patterns within IVR responses.

FIG. 23 is a plot illustrating data received from Botnet
activity via an Internet Relay Chat (IRC) channel. In one
embodiment used to generate the data illustrated in FIG. 23,
the CoClITe tool 202, 302 is used to detect and coordinate
patterns within IRC messages that are characteristic of Botnet
activity. The illustrated example shows a burst of 556 similar
messages from 110 different 1P addresses (bots) to a single
control distributed denial of service (DDoS) attack ona single
target.

CONCLUSION

The present disclosure considers the problem of discover-
ing and coordinating changes occurring within text streams.
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Typically the volume of text streams being acquired in many
domains is far too large for human analysts to process and
understand by direct inspection, especially in a timely man-
ner. Therefore, there is a need for tools that can execute
change detection and coordination. Changes can be abrupt,
gradual, or cyclic. Changes can reverse themselves, and can
occur in groups that have a common underlying cause. A tool
that is designed to accommodate these behaviors can be of
material assistance to analysts in providing them with com-
pact summaries of important patterns of change that would
otherwise be hidden in the noise. It is then for the analyst to
decide what priority to give to the discovered events.

The above description has described a methodology for
efficiently finding step changes, trends, and multi-phase
cycles affecting lexical items within streams of text that can
be optionally labeled with metadata. Multiple change-points
for each lexical item are discovered using a dynamic pro-
gramming algorithm that ensures optimality. A measure of
interestingness has been introduced that weights each
change-point by how much information it provides, and
complements the more conventional measures of statistical
significance. These changes are then grouped across both
lexical and metavalue vocabularies in order to summarize the
changes that are synchronous in time.

A linear-space, quadratic-time implementation of this
methodology is described as a function of the time span of the
data and can be applied either retrospectively to a corpus of
data or in streaming mode on an ongoing basis. The output of
the tool can be a set of ranked events, each including sets of
lexical items and metavalues together with a description of
the timing of the event. This information, perhaps augmented
with a sample of the original documents, can assist a human
analyst in understanding an event and its significance.

The law does not require and it is economically prohibitive
to illustrate and teach every possible embodiment of the
present claims. Hence, the above-described embodiments are
merely exemplary illustrations of implementations set forth
for a clear understanding of the principles of the disclosure.
Variations, modifications, and combinations may be made to
the above-described embodiments without departing from
the scope of the claims. All such variations, modifications,
and combinations are included herein by the scope of this
disclosure and the following claims.

What is claimed is:
1. A method for detecting and coordinating change events
in a data stream comprising:

monitoring, by a processor, over time, a probability of
occurrence of lexical items in a data stream comprising
a plurality of lexical items and a metavalue associated
therewith, according to a lexical occurrence model, to
detect a plurality of change events in the data stream;

applying, by the processor, a significance test to the change
events to determine if the change events are statistically
significant;

applying, by the processor, an interestingness test to the
change events to determine a measure of interest (I)
indicating whether the change events are likely to be of
interest to a user, the interestingness test defined using
conditional mutual information between the lexical
items (W) and the lexical occurrence model (M) given a
time span (1) as provided by a relationship:

IW-MTDy=H(NT)-HWM,T)

where H represents conditional entropy; and
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grouping the change events across the lexical items and
the metavalue to summarize the change events that are
synchronous in time, the grouping forming a set of
grouped change events.
2. The method of claim 1, wherein the data stream com-
prises a text stream.
3. The method of claim 1, wherein the lexical items in the
data stream comprise at least one of a single word, a symbol,
anumber, a date, a place, anamed-entity, a URL, textual data,
multimedia data, and a token.
4. The method of claim 1, wherein the metavalue associ-
ated with the lexical items includes at least one of external
metadata and internal metadata.
5. The method of claim 1; wherein the probability of occur-
rence of the lexical items in the data stream is monitored over
time according to the lexical occurrence model to detect at
least one of a step change, a trend, a cycle, and a burst in the
data stream.
6. The method of claim 1, wherein the lexical occurrence
model includes at least one of a piecewise-constant lexical
occurrence model and a piecewise-linear lexical occurrence
model.
7. The method of claim 1; wherein the lexical occurrence
model includes a periodic component to detect cyclic change
events and a piecewise-linear component to detect acyclic
change events.
8. A non-transitory computer readable storage medium
comprising computer readable instructions that; when
executed by a processor, cause the processor to perform
operations comprising:
monitoring, over time, a probability of occurrence of lexi-
cal items in a data stream comprising a plurality of
lexical items and a metavalue associated therewith,
according to a lexical occurrence model, to detect a
plurality of change events in the data stream;
applying a significance test to the change events to deter-
mine if the change events are statistically significant;

applying an interestingness test to the change events to
determine a measure of interest (I) indicating whether
the change events are likely to be of interest to a user; the
interestingness test defined using conditional mutual
information between the lexical items (W) and the lexi-
cal occurrence model (M) given a time span (1) as pro-
vided by a relationship:

IW-MTy=H(NT)-HVM,T)

where H represents conditional entropy; and
grouping the change events across the lexical items and
the metavalue to summarize the change events that are
synchronous in time, the grouping forming a set of
grouped change events.
9. The non-transitory computer readable storage medium
of claim 8, wherein the data stream comprises a text stream.
10. The non-transitory computer readable storage medium
of claim 8, wherein the lexical items in the data stream com-
prise at least one of a single word, a symbol, a number, a date,
a place, a named-entities, a URL, textual data, multimedia
data, and a token, and the metavalue associated therewith.
11. The non-transitory computer readable storage medium
of claim 8, wherein the metavalue associated with the lexical
items includes at least one of external metadata and internal
metadata.
12. The non-transitory computer readable storage medium
of claim 8, wherein the computer readable instructions for
monitoring the probability of occurrence of the lexical items
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in the data stream over time cause the processor to detect at
least one of a step change, a trend, a cycle, and a burst in the
data stream.

13. The non-transitory computer readable storage medium
of claim 8, wherein the lexical occurrence model includes at
least one a piecewise-constant lexical occurrence model and
a piecewise-linear lexical occurrence model.

14. The non-transitory computer readable storage medium
of claim 8, wherein the lexical occurrence model includes a
periodic component to detect cyclic change events and a
piecewise-linear component to detect acyclic change events.

15. A system for detecting and coordinating change events
in a data stream, comprising:

a processor;

a memory in communication with the processor, the
memory having stored thereon instructions, executable
by the processor to cause the processor to perform
operations comprising:
monitoring, over time, a probability of occurrence of

lexical items in a data stream comprising a plurality of
lexical items and a metavalue associated therewith,
according to a lexical occurrence model, to detect a
plurality of change events in the data stream;
applying a significance test to the change events to deter-
mine if the change events are statistically significant;
applying an interestingness test to the change events to
determine a measure of interest (I) indicating whether
the change events are likely to be of interest to a user,
the interestingness test defined using conditional
mutual information between the lexical items (W) and
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the lexical occurrence model (M) given a time span
(T) as provided by a relationship:

IW-MTy=H(NT)-HVM,T)

where H represents conditional entropy; and
grouping the change events across the lexical items and
the metavalue to summarize the change events that are
synchronous in time, the grouping forming a set of
grouped change events.

16. The system of claim 15, wherein the data stream com-
prises a text stream, and the lexical items comprise at least one
of a single word, a symbol, a number, a date, a place, a
named-entities, a URL, textual data, multimedia data, and a
token.

17. The system of claim 15, wherein the metavalue com-
prises at least one of external metadata and internal metadata.

18. The system of claim 15, wherein the instructions for
monitoring the probability of occurrence of the lexical items
in the data stream over time cause the processor to detect at
least one of a step change, a trend, a cycle, and a burst in the
data stream.

19. The system of claim 15, wherein the lexical occurrence
model includes at least one of a piecewise-constant lexical
occurrence model and a piecewise-linear lexical occurrence
model.

20. The system of claim 15, wherein the lexical occurrence
model includes a periodic component to detect cyclic change
events and a piecewise-linear component to detect acyclic
change events.



